Human Health Effects
of Criteria Pollutants

Introduction

In response to the mandate of section 812 of the
Clean Air Act Amendments of 1990 (CAAA), EPA
identified and estimated the quantifiable health
benefits Americans should enjoy in 2000 and 2010 due
to improved air quality resulting from the CAAA. The
results suggest that the CAAA will result in significant
reductions in mortality, respiratory illness, heart
disease, and other adverse health effects, in addition to
those reported in EPA’s (1997) retrospective analysis
of the Clean Air Act. In that analysis, the Agency
found that significant health benefits accrued between
1970 and 1990, especially as a consequence of the
reductions in ambient particulate matter (PM).

This appendix presents an overview of EPA’s
approach for modeling the human health effects of
the CAAA. It outlines the principles used to guide the
human health benefits analysis, describes methods
used to quantify criteria air pollutant exposure
nationwide, and discusses issues that arise in using
health effect information. Following this overview,
the appendix presents the modeling results, reported
as estimates of avoided incidences of adverse health
effects.

Health Effects Modeling
Approach

In the section 812 retrospective analysis, EPA
(1997) developed an approach for quantifying the
effects of reduced pollutant exposure in the 48
continental states and the District of Columbia, with
particular focus on those effect categories for which
monetary benefits could be estimated. The study
design adopted for this analysis follows a similar
approach, using a sequence of linked analytical models
to estimate benefits. The first step is an analysis of the
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likely implementation activities undertaken in
response to the CAAA. These forecasted activities
provided a basis for modeling criteria pollutant
emissions under the two scenatios considered (the
Pre-CAAA scenatio and the Post-CAAA scenario), as
documented in Appendix A. The emissions estimates
were input into the air quality models (Appendix C),
and ambient pollutant concentrations estimated by the
air quality models were input into the health benefits
model, the focus of this appendix.

The health benefits model relies on two inputs:
(1) forecasted changes in pollutant exposures across
the study period, and (2) concentration-response (C-
R) functions that quantify the relationship between
the forecasted changes in exposure and expected
changes in specific health effects.We discuss the
inputs used for the 48 continental states and the
District of Columbia below.'

Quantifying Changes in Pollutant
Exposures

Quantifying changes in pollutant exposures in this
analysis relies on two inputs: (1) forecasts of ambient
pollution levels at the available air quality monitors in
the 48 contiguous states, and (2) extrapolations from
the available air quality monitors (which are not
uniformly distributed across the U.S.) to a population
grid system of eight km by eight km cells that covers
the 48 contiguous states and the District of Columbia.

! These inputs could also be used to estimate exposure in the
border regions of Mexico and Canada that might have improved
air quality in the Post-CAAA scenario.
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Forecasting 2000 and 2010
Pollution Levels at Ambient Air
Quality Monitors

When quantifying adverse human health effects,
the section 812 prospective analysis estimated 2000
and 2010 ambient concentrations for both the Pre-
CAAA and Post-CAAA scenarios for the following
pollutants and air quality parameters:

® Particulate matter, less than 10 microns in
diameter (PM,)
Particulate matter, less than 2.5 microns in
diameter (PM, ;)
Ozone (O5)
Nitrogen dioxide (NO,)
Sulfur dioxide (SO,)
Carbon monoxide (CO)

The sixth criteria pollutant, lead (Pb), is not
included in this analysis since airborne emissions of
lead were virtually eliminated by pre-1990 CAA
programs. The methods used to estimate the
concentrations of these pollutants at monitors are

described in Appendix C.

Extrapolating Forecasts at Air
OQuality Monitors to Population Grid
Cells

The next step is to extend forecasts for a limited
number of air quality monitors to estimate population
exposure at all locations in the continental United
States, using the Criteria Air Pollutant Modeling
System (CAPMS). CAPMS divides the United States
into eight kilometer by eight kilometer grid cells and
estimates the changes in incidence of adverse health
effects associated with given changes in air quality in
each grid cell. The national incidence change (or the
changes within individual states or counties) is then
calculated as the sum of grid-cell-specific changes. To
calculate changes in population exposure in a grid cell,
CAPMS requires data on the population in the grid-
cell and the change in air quality.
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First, grid-cell-specific population counts for 1990
are derived from U.S. Census Bureau block level
population data (Wessex, 1994). Future year grid-cell
population estimates are then extrapolated from 1990
grid-cell population levels using the ratio of future-
year and 1990 state-level population estimates
provided by the U.S. Bureau of Economic Analysis
(1995). CAPMS assumes that all grid cell populations
in a state grow at the same rate as the state population
as a whole (where a grid cell is defined as being in a
state if the grid cell centroid is in the state).

Second, CAPMS requires estimates of two air
quality regimes at CAPMS grid cell centers: baseline
(in this case, 1990) air quality levels and regulatory
alternative air quality levels in future years (in this case,
2000 and 2010). Air quality inputs to CAPMS for pre-
and Post-CAAA scenarios must use the averaging
time required by the C-R functions being used.” For
example, a C-R function relating mortality to annual
median PM,; concentrations trequires that annual
median PM, ; concentrations be available at CAPMS
grid cell centers. Although the input PM, ; data must
be in the form of daily averages, the monitors need
not be at CAPMS grid cell centers. Given any set of
location-specific air quality data, CAPMS interpolates
the corresponding air quality values at each CAPMS
grid cell center.

To reduce computational time when estimating
the change in health effects associated with daily
pollution levels, CAPMS approximates a year’s (or
season's) worth of daily pollutant concentrations at
each monitor by 20 “bins” of pollutant
concentrations. Each bin represents five percent of
the daily pollutant concentrations in the period of
interest, and is set at the midpoint of the percentile
range it represents. For n = 20 and a yeat's worth of
observations, the first bin represents the first (lowest)
five percent of the distribution of 365 pollutant
concentrations at the given location, and is set at the
2.5th percentile value; the second bin represents the
next five percent of the distribution of daily values,

’The development of C-R functions is discussed later in this
appendix.
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and is set at the 7.5th percentile value, and so on.
Each of the twenty bins therefore represents 18.25
(=365/20) days. Interpolation of air quality levels at
CAPMS grid cell centers is based on these input
location-specific bins, so that the annual incidence
changes in each grid cell are calculated for twenty
pollutant concentrations (the 20 bins of air quality)
rather than for 365 pollutant concentrations. The
resulting incidence change is then multiplied by 18.25
to reconstruct an entire years’ worth of incidence
change in the CAPMS grid cell.

As shown in Figure 1, actual ambient pollution
data is only available from limited monitor sites. Data
must be extrapolated to unmonitored locations, in
order to estimate the impact of air pollution on the
health and welfare effects considered in this analysis.
The available air monitoring data were extrapolated
from all available monitor locations to a grid of eight
km by eight km population grid-cells throughout the
contiguous 48 states, using a Voronoi neighbor
averaging (VNA) spatial interpolation procedure.’

The VNA procedure interpolates air quality
estimates from the set of surrounding air quality
monitors to the center of each population grid-cell.
The VNA procedure is a generalization of planar
interpolation. Rather than arbitrarily limiting the
selection of monitors, VNA identifies the set of
monitors that best “surrounds” the center of each
grid-cell by identifying which monitor is closest
(considering both angular direction and horizontal
distance) in each direction from the grid-cell center.
Each selected monitor will likely be the closest
monitor for multiple directions. The set of monitors
found using this approach forms a polygon around the
grid-cell center.

For each grid cell, CAPMS calculates the distance
to each member of a set of monitors surrounding that
grid cell. Monitors close to the grid cell are assumed
to yield a more accurate air quality description of that
grid cell, and are given a larger weight when calculating

*For locations within 50 kilometers of a monitor, the
interpolation method is the same as that used by Abt Associates
(1998) for the NO, SIP call analysis; previously termed the
"convex polygon" method, it is more accurately described as
Voronoi neighbor averaging (VNA) spatial interpolation, which
will be used throughout this document.

the average air quality for that grid cell. Conversely,
monitors that are further away receive less weight.
After determining the final set of surrounding
monitors, the grid cell’s air quality level is calculated as
an inverse, distance-weighted average of the air quality
levels at the selected monitors.

Air quality estimates generated using this VNA
method are likely to be most uncertain at population
grid cell locations far removed from the nearest
monitor. For example, if a grid cell encompasses a
relatively unpolluted rural area, but the nearest (albeit
distant) monitors are measuring air quality in
industrialized urban areas, the VNA method described
above will overestimate the pollution level for that
grid cell.  As a result, this monitor-based VNA
extrapolation method is used only at grid cells located
within 50 kilometers of an air pollution monitor.

At distances greater than 50 kilometers from a
monitor, additional information is needed to improve
the estimates of air quality in unmonitored areas. A
modified VNA method incorporating both monitor
data and air quality modeling predictions is employed
at these grid cell locations. In addition to the
distance-weighted averaging of monitor
concentrations, this modified extrapolation method
incorporates a spatial adjustment factor that reflects
the ratio of model-derived air quality predictions at
the target and source locations. The addition of the
modeling results helps account for differences in
geography, meteorology, land use and other factors
affecting air pollution levels between the target and
source areas. Additional details on both VNA
extrapolation methods can be found in Abt Associates

(1999).
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841 Ozone Monitors 761 SO2 Monitors

Figure D-1
Location of Air Quality Monitors
Section 812 Analysis

2048 PM Monitors
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Quantifying Human Health Effects of
Exposure

To calculate point estimates of the changes in
incidence of a given selection of adverse health and
welfare effects associated with a given set of air quality
changes, CAPMS performs the following steps for
each grid cell: (1) Interpolation of the air quality in the
baseline scenario and in the control scenatio at each
CAPMS grid cell center for each pollutant. (2)
Calculation of the changes in air quality from baseline
to control scenario in the CAPMS grid cell. The
changes in air quality are calculated as the differences
between the baseline bins and the corresponding
control scenario bins. (3) Identification of the selected
C-R functions being used, and the required baseline
incidence rates and the relevant grid cell population.
(4) Calculation of the change in incidence of each
adverse health effect for which a C-R function has
been identified. The resulting annual incidence change
for each grid cell is then summed with those of the
other grid cells, to calculate the estimated change in
incidence nationwide.

Types of Health Studies

Research on the health effects of air pollution
strongly suggests that reductions in the incidence of
adverse health effects are a significant benefit of air
pollution control. The available human health studies
that could serve as the basis of the section 812
prospective assessment can be categorized into
chamber studies and epidemiology studies. Chamber
studies involve examination of human responses to
controlled conditions in a laboratory setting, while
epidemiological studies investigate the association
between exposure to ambient air pollution and
observed health effects in a study population. The
relative advantages of reliance on each type of research
are described below.

Chamber Studies

Chamber studies of air pollution involve exposing
human subjects to various levels of air pollution in a
carefully controlled and monitored laboratory
situation. The physical condition of the subjects is
measured before, during and after the exposure.

These measurements can include general biomedical
information (e.g., pulse rate and blood pressure),
physiological effects specifically induced by the
pollutant (e.g., altered lung function), the onset of
symptoms (e.g., wheezing or chest pain), or the ability
of the individual to perform specific physical or
cognitive tasks (e.g., maximum sustainable speed on a
treadmill). These studies often involve exposing the
individuals to pollutants while exercising, which
increases respiration and the amount of pollution
introduced into the lungs.

One advantage of chamber studies is that they can
potentially establish cause-effect relationships between
pollutants and certain human health effects. In
addition, repeated experiments altering the pollutant
level, exercise regime, and type of participants can
potentially identify effect thresholds, the impact of
recovery (rest) periods, and the differences in
response among population groups. While cost
considerations tend to limit the number of
participants and experimental variants examined in a
single study, chamber studies can follow rigorous
laboratory scientific protocols, such as the use of
placebos (clean air) to establish a baseline level of
effects and precise measurement of certain health
effects of concern.

There are drawbacks to using chamber studies as
the basis for a comprehensive benefits analysis.
Chamber studies are most appropriate for examining
acute symptoms caused by exposure to a pollutant for
a few hours. While this permits examination of some
important health effects from air pollution, such as
broncho-constriction in asthmatic individuals caused
by sulfur dioxide, it precludes studying effects caused
by long term exposure. Another drawback is that
health effects measured in some well-designed
chamber studies are selected on the basis of the ability
to measure precisely an effect, for example forced
expiratory volume, rather than a larger symptom.
Some of these measurable but relatively minor health
effects, such as reduced lung function, have an unclear
impact on future medical condition and lifestyle,
although some research discussed later has addressed
this question.

Ethical considerations in experiments involving
humans also impose important limits on the potential
scope of chamber research. Chronic effects cannot be
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investigated because people cannot be kept in
controlled conditions for an extended period of time,
and because chronic effects are generally irreversible.
Participation is generally restricted to healthy subjects,
or at least excludes people with existing health
conditions that compromise their safe inclusion in the
study. This can result in a lack of direct evidence
about populations of most concern, such as people
who already have serious respiratory diseases. Ethical
considerations also limit experimental pollutant
concentrations to relatively modest exposure levels,
and confine studies to examining only mild health
effects that are believed to do no permanent damage.
Obviously, for ethical reasons, evidence from chamber
studies cannot be obtained on the possible
relationship between pollution and mortality, heart
attack, strokes, or cancet.

The information derived from chamber research
raises some questions as to how well it applies to the
general population and their activity patterns and
pollution exposures. (1) The dose-response functions
developed from chamber research are specific to the
population participating in the study. Chamber
studies typically study a small population -- certainly
much smaller than those typically evaluated in
epidemiological studies (discussed below) -- so there
are concerns that the results may not apply to the
much larger and likely more diverse general
population. (2) Chamber studies evaluate only a
certain number of activity patterns (e.g., exercise), and
cannot replicate the diverse pattern of activity seen in
the course of a day. (3) Chamber studies cannot easily
replicate the varied pollution levels to which people
are exposed during the course of their day at work, on
the freeway, at home, and other places.

As discussed below in the section on health
effects study selection, the generalizability of results is
an important factor in this analysis. Studies that use a
large, diverse group of subjects are easier to apply to
the general population than studies using smaller,
narrowly defined group of subjects. This does not,
however, rule out studies that focus on asthmatics,
children, or the eldetly, since these groups may be
particulatly sensitive to air pollution. Similarly, studies
that use exposure regimes and exercise levels similar to
what large groups of the population experience are
casier to apply in a benefits model than are less
representative studies.

Epidemiological Studies

Epidemiological studies present the results of a
statistical analysis of the relationship between ambient
pollution exposure and adverse health effects. The
data for these studies includes ambient air quality
monitoring data and adverse health effects data such
as mortality incidence (e.g., National Center for
Health Statistics, 1994), hospital admissions (e.g.,
Graves and Gillum, 1997), questionnaires (e.g., Adams
and Marano, 1995), and diaries that are kept by study
participants over a period of time (e.g., Ostro et al.,

1991).

At least to some extent, these estimated
relationships implicitly take into account complex real-
world human activity patterns (including actions to
avoid air pollution), spatial and temporal differences
in air pollution distributions, and possible synergistic
effects of multiple pollutants. Epidemiological studies
typically involve a large number of people and may
not suffer as much from the extrapolation problems
common to chamber studies, which often have a
limited number of subjects. In addition, observable
health endpoints are measured, unlike chamber
studies, which often monitor endpoints that do not
result in observable health effects (e.g. forced
expiratory volume).

Two types of epidemiological studies are
considered for inclusion in this analysis: individual-
level cohort studies and population-level ecological
studies. Cohort-based studies track individuals over
a certain period of time, with periodic evaluation of
the individuals’ exposure and health status. Cohort
studies can either follow a group of initially disease-
free individuals forward in time (a prospective cohort)
or gather historical data on exposure and disease for
a given group (a retrospective cohort). Studies about
relatively rare events such as cancer incidence or
mortality can require tracking the individuals over a
long period of time, while more common events (e.g.,
respiratory symptoms) occur with sufficient frequency
to evaluate the relationship over a shorter time period.
An important feature of cohort studies is that
information is collected about each individual that
may include other variables that could be correlated
with both the exposure and the disease outcome, such
as smoking or income. If investigators do not identify
and control for these variables, called confounders, in
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a study, they may produce a spurious association
between air pollution and adverse health effects.

A second type of study used in this analysis is a
population-level ecological study. These studies assess
the relationship between population-wide health
information (such as counts for daily mortality,
hospital admissions, or emergency room visits) and
ambient levels of air pollution. There are two types of
such studies: cross-sectional and time-seties studies.
Using data at a point in time from a variety of
locations, cross-sectional studies examine the
relationship between pollution exposure and adverse
health effects, while trying to control confounding
variables. Cross-sectional studies ate not as desirable
as prospective cohort studies, in part, because of their
failure to control for important covariates such as
smoking." Rather than look at variety of locations at
one point in time, a time series analysis studies a single
location and typically examines the relationship
between daily changes in ambient pollution level and
daily changes in adverse health effects. An important
advantage of the time-series design is that it allows the
population to serve as its own control with regard to
certain factors such as race and gender, and is thus
similar to a cohort study (Schwartz, 1997, p. 372).
Other factors that change over time can also affect
health (tobacco, alcohol and illicit drug use, access to
health care, employment, and nutrition). However,
since such potential confounding factors are unlikely
to vary from day to day in the same manner as air
pollution levels, these factors are unlikely to affect the
magnitude of the association between air pollution
and daily variations in human health responses.

Drawbacks to epidemiological studies include
difficulties associated with adequately characterizing
exposure to individuals (that tends to lead to a
downward bias in the estimated pollution-health effect
relationship), and uncontrolled confounding variables,
that can potentially lead to spurious conclusions. In
particular, air pollutants are often highly correlated, so
it is difficult to determine which may be associated
with an adverse effect. In addition, epidemiological
studies, by design, are unable to definitively prove a
causal relationship between an exposure and a given

“Criticisms of cross-sectional studies are considered in Evans

et al. (1984), Lipfert and Wyzga (1995), and others.

health effect; they can only identify associations or
correlations between exposure and the health
outcome. However, given the major advantage of
epidemiological studies -- relatively severe health
effects may be observed in a large, more
heterogeneous population -- epidemiological studies
are used as the basis for determining the majority of
health effects and C-R functions in this analysis.
Chamber studies are used if thetre are health effects
observed in chamber studies not observed in
epidemiological studies, such as shortness of breath in
young asthmatics induced by SO, (e.g., Linn et al.,
1987).

Selection of C-R Functions

This section describes the methods used to detive
the C-R functions used in this analysis to quantify the
effect of CO, NO,, SO,, O;, and PM on people's
health. It discusses the general issues that arise with
the choice and use of C-R functions, and the issues
specific to C-R functions for mortality and morbidity.

C-R Function General Issues

Derivation of C-R Functions

For expository simplicity, the following discussion
focuses on PM C-R functions, although it applies to
all of the health effects and pollutants considered in
the 812 prospective analysis. In what follows, the
health effect estimated is simply denoted as y, and is
estimated at a single location (population cell), where
a change in PM air quality (APM) corresponds to a
change in the health endpoint (Ay). The calculation of
Ay depends on a C-R function, derived typically from
an epidemiological study.

There are a variety of epidemiological studies in
the science literature, making it important to
understand the nuances of ecach study before
developing a C-R function. Different epidemiological
studies may have estimated the relationship between
PM and a particular health endpoint in different
locations. The C-R functions estimated by these
studies may differ from each other in several ways.
They may have different functional forms; they may
have measured PM concentrations in different ways;
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they may have characterized the health endpoint, y, in
slightly different ways; or they may have considered
different types of populations. Some studies have
assumed that the relationship between y and PM is
best described by a linear form, where the relationship
between y and PM is estimated by a linear regression
in which y is the dependent variable and PM is one of
several independent variables, while other studies have
assumed that the relationship is best described by a
log-linear form (i.e., the relationship between the
natural logarithm of y and PM is estimated by a linear
regression).” Some studies of the relationship between
ambient PM concentrations and mortality have
excluded accidental deaths from their mortality
counts; others have included all deaths. One study
may have measured daily (24-hour) average PM
concentrations, while another study may have used
two-day averages. Finally, one study may have
considered changes in the health endpoint only among
members of a particular subgroup of the population
(e.g., individuals 65 and older), while other studies may
have considered the entire population in the study
location.

Estimating the relationship between PM and a
health endpoint, y, consists of two steps: (1) choosing
a functional form of the relationship, and (2)
estimating the values of the parameters in the function
assumed. The two most common functional forms in
the epidemiological literature on health effects are the
log-linear and the linear relationship. The log-linear
relationship is of the form:

y = Be?™" )

or, equivalently,

*The log-linear form used in the epidemiological literature on
ozone- and PM-related health effects is often referred to as
“Poisson regression” because the underlying dependent variable is
a count (e.g., number of deaths), believed to be Poisson
distributed. The model may be estimated by regression techniques
but is often estimated by maximum likelihood techniques. The
form of the model, however, is still log-linear.

In(y) =a + B[(PM , @)

where the parameter B is the incidence of y when the
concentration of PM is zero, the parameter § is the
coefficient of PM, In(y) is the natural logarithm of y,
and o« = In(B).® If the functional form of the C-R
relationship is log-linear, the relationship between
APM (= PM,, n. - PM and Ay is:

after changc)

Ay =y- yafterchange: - y[ﬁ e_ﬁmPM - 1] ! (3)

where y is the baseline incidence of the health effect
(i-e., the incidence before the change in PM). For a
log-linear C-R function, the relative risk (RR)
associated with the change in PM is:

_ yafterchange _ e_BmpM

RRy, = 4)

Epidemiological studies often report a relative risk
for a given APM, rather than the C-R coefficient, 3.
The coefficient can be derived from the reported
relative risk and APM, however, by solving for $ in
equation (4):

In(RR)
= 5
P APM ©)
The linear relationship is of the form:
y=a+pLPM, (©)

¢ Other covariates besides pollution cleatly affect mortality.
The parameter B might be thought of as containing these other
covariates, for example, evaluated at their means. That is, B =
Boexp{Bx; + ... + B.x,}, where B, is the incidence of y when all
covariates in the model are zero, and x, ... , X, are the other
covariates evaluated at their mean values. The parameter B drops
out of the model, however, when changes in y are calculated, and
is therefore not important.
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where a incorporates all the other independent
variables in the regression (evaluated at their mean
values, for example) times their respective coefficients.
When the C-R function is linear, the relationship
between a relative risk and the coefficient, 8, is not
quite as straightforward as it is when the function is
log-linear. Studies using linear functions usually report
the coefficient directly.

1f the functional form of the C-R relationship is
linear, the relationship between APM and Ay is simply:

Ay = BIAPM . )

If the C-R function is linear, equation (7) may be
used to estimate Ay associated with APM, assuming
the measurement of APM is consistent with the PM
measurement used in the health effects study from
which the C-R function was derived. If the function
is log-linear, the baseline incidence for y and an
appropriate measure for APM may be used in
equation (3).

A few epidemiological studies, estimating the
relationship between certain morbidity endpoints and
air pollution, have used functional forms other than
linear or log-linear forms. Of these, logistic
regressions are the most common. The details of the
models used in these studies are given in the papers
reporting the methods and results of the studies.

Thresholds

When conducting chamber and epidemiological
studies, C-R functions may be estimated with and
without explicit thresholds. Air pollution levels below
the threshold are assumed to have no associated
adverse health effects. When a threshold is not
assumed, as is often the case in epidemiological work,
any exposure level is assumed to pose a non-zero risk
of response to at least one segment of the population.

Thresholds may a/so be incorporated by a policy
analyst using a C-R function derived from the original
study, even if the original study did not assume a
threshold. A threshold may be set at any point,
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although some points may be considered more
obvious candidates than others. One possible
assumption is that there is a threshold at the non-
anthropogenic background level of the pollutant.
Another possibility is there is a threshold at the lowest
observed level in the study that estimated the C-R
function. Another might be a relevant standard for
the pollutant.

One method to conduct policy analysis assuming
a threshold model is to simply truncate the C-R
function at the threshold (i.e., to exclude any physical
effect changes associated with, say, PM levels below
the designated threshold). This method uses the
original C-R function, but calculates the change in PM
as [max(T, baseline PM) - max(T, regulatory
alternative PM)], where T denotes the designated
threshold. An alternative method is to replace the
original C-R function with a “hockey stick” model
that best approximates the original function that was
estimated using actual data. A typical hockey stick C-
R function is horizontal up to a designated threshold
PM level, T, and is linear with a positive slope for PM
concentrations greater than T. This is just the
following variation on equation (2) above:

for PM < T, )

forPM > T, wherg8>0. (9)

In(y) =«a
=a+BIPM

The specification of such a ‘hockey stick’ model,
while theoretically preferable to a simple truncation
model, requires re-analysis of the underlying data from
the original health effect study. Such primary re-
analysis is beyond the scope of the section 812
analysis. Alternatively, if a simple truncation model is
used, application of the resulting C-R function would
likely result in a significant underestimate of the health
effects avoided by reductions in pollutant exposures
above the assumed threshold.

The possible existence of an effect threshold is a
very important scientific question and issue for policy
analyses such as the section 812 analysis. However,
there is currently no scientific basis for selecting a
particular threshold for the effects considered in this
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analysis, if a threshold is defined as a level
characterized by an absence of observable effects.
Therefore, this analysis assumes there are no
thresholds for modeling health effects. However, the
potential impact of alternative threshold assumptions
for PM-related premature mortality is explored as a
key sensitivity analysis.

Pooling Studies

When only a single study has estimated the C-R
relationship between a pollutant and a given health
endpoint, the estimation of a population cell-specific
incidence change is straightforward. For some
endpoints, however, C-R functions have been
estimated by several studies, often in several locations.
In this case, if the input components (e.g., functional
forms, pollutant averaging times, study populations)
are all the same (or very similar), a pooled, “central
tendency” C-R function can be derived from the
multiple study-specific C-R functions.

One potential method of pooled analysis is simply
averaging the coefficients from all the studies. This
has the advantage of simplicity, but the disadvantage
of not taking into account the measured uncertainty of
each of the estimates. Estimates with great
uncertainty surrounding them are given the same
weight as estimates with very little uncertainty.

An alternative approach to pooling the estimates
from different studies is to give more weight to
estimates from studies with little reported uncertainty
than to estimates with a great deal of uncertainty. The
exact way in which weights are assigned to estimates
of PM coefficients from different studies in a pooled
analysis depends on the underlying assumption about
how the different estimates are related to each other.
If, for example, there is actually a distribution of true
effect coefficients, or B’s, that differ by location
(referred to as the random effects model), the
different coefficients reported by different studies may
be estimates of different underlying coefficients, rather
than just different estimates of the same coefficient.
In contrast to the fixed effects model (which assumes
that there is only one B everywhere), the random-

effects model allows the possibility that different
studies are estimating different parameters.

A third approach to pooling studies is to apply
subjective weights to the studies, rather than
conducting a random effects pooling analysis. If the
analyst is aware of specific strengths and weaknesses
of the studies involved, this prior information may be
used as input to the calculation of weights which
reflect the relative reliability of the estimates from the
studies.

In some cases, studies reported several estimates
of the C-R coefficient, each corresponding to a
particular year or particular study area. For example,
Ostro and Rothschild (1989b) report six separate
regression coefficients that correspond to regression
models run for six separate years. This analysis
combined the individual estimates using a meta-
analysis on the six years of data.

Pollution Exposure Measure

The study on which an acute exposure C-R
function is based may have wused pollution
concentrations averaged over several days. Those
studies that use multi-day averages are in effect using
a smoothed data set, comparing each day’s adverse
health effects to recent average exposure rather than
simply exposure on the same day. This does not have
much effect on the estimated adverse health effects,
especially when the C-R function has a linear or nearly
linear functional form. For example, if the functional
form were linear and based on a five-day pollution
average, then the estimated effects over the course of
the year would be essentially the same between using
daily pollution observations in the C-R function or a
two-day average. This is analogous to summing up
five numbers (6,4,8,4,8=30) or taking their average
and multiplying by five (6*5=30); in each case the
answer is 30. This analysis uses daily pollution levels
in cases where there are multi-day averaging times.
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Regional Variation

Whether the C-R relationship between a pollutant
and a given health endpoint is estimated by a single
function from a single study or by a pooled function
of C-R functions from several studies, that same C-R
relationship is applied everywhere in the current
benefits analysis. Although the C-R relationship may
in fact vary somewhat from one location to another
(for example, due to differences in population
susceptibilities or differences in the composition of
PM), location-specific C-R functions are available only
for those locations in which studies were conducted.
A single function applied everywhere may result in
overestimates of incidence changes in some locations
and underestimates of incidence changes in other
locations. It is not possible, however, to know the
extent or ditection of the overall bias in the total
incidence change introduced by application of a single
C-R function everywhere.

PM Size and Composition

Current research suggests that particle size, and
perhaps particle composition, matters when estimating
the health impacts of PM. Particulate matter is a
heterogeneous mix that varies over time and space,
and may include solid or liquid compounds, including
organic aerosols, sulfates, nitrates, metals, elemental
carbon, and other material. Fine PM is generally
viewed as having a more harmful impact than coarse
PM, although it is not clear to what extent this may
differ by the type of health effect or the exposed
population. While one cannot necessarily assume that
coarse PM has no adverse impact on health, it seems
reasonable to prefer the use of PM,; as a proxy for
the impact of PM. Due to the relative abundance of
studies using PM,,, however, and the reasonably good
cotrelation between PM, ; and PM,;, in urban areas, in
many cases this analysis also uses PM,, studies to
estimate the impact of PM. Similarly, at this stage of
knowledge, it is not clear what composition
distinctions to make, if any, when estimating the
impact of PM. The C-R functions used in this analysis
relate adverse health effects to an undifferentiated
mass of particles (e.g., PM,); they do not relate effects
to individual PM components.

Baseline Incidence Rate

Some C-R functions (those expressed as a change
relative to baseline conditions) require baseline
incidence data associated with ambient levels of
pollutants. Baseline incidence data necessary for the
calculation of risk and benefits were obtained from
national sources whenever possible, because these
data are most applicable to a national assessment of
benefits.  County-specific estimates of baseline
mortality incidences used in this analysis were
obtained from the National Center for Health
Statistics (1994). The National Center for Health
Statistics also provided much of the information on
national incidence rates. However, for some studies,
the only available baseline incidence information
comes from the studies themselves; in these cases, the
baseline incidence in the study population is assumed
to represent the baseline incidence nationally.

Population

Many studies focus on a particular age cohort.
The age group chosen is often a matter of
convenience (e.g., extensive Medicare data may be
available for the eldetly population) and not because
the effects are necessarily restricted to the specific age
group, even though their incidence may vary
considerably over an individual’s life span.
Nevertheless, to avoid overestimating the benefits of
reduced pollution levels, this analysis applies the given
C-R relationships only to those age groups
corresponding to the cohorts studied. Likewise, some
studies were performed on individuals with specific
occupations, activity patterns, or medical conditions
because these traits relate to the likelihood of effect,
such as in the estimation of worker productivity. In
these cases, application of dose-response functions
has been restricted to populations of individuals with
these same characteristics. As discussed in more detail
below, however, by assuming that the C-R
relationships should only be applied to those
subpopulations matching the original study
population, the present analysis may be significantly
underestimating the whole population benefits of
reductions in pollutant exposures.
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C-R Function Selection Criteria

A number of considerations arose in selecting and
applying concentration-response (C-R) functions for
the section 812 prospective assessment. These
considerations are summarized in Table D-1 below.
Because concentration-response functions are the
means of relating changes in pollutant levels to
changes in health endpoints, they are a critical
component of a benefits analysis. While a study may
be superior with regard to one consideration (e.g.,
number of pollutants considered), it may be inferior
with regard to another consideration (e.g., number of
observations). The selection of C-R functions for the
benefits analysis was guided by the goal of achieving
a balance between comprehensiveness and scientific
defensibility. The issues considered are discussed
below in some detail.
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Table D-1

Summary of Considerations Used in Selecting C-R Functions

Consideration

Comments

Peer reviewed
research

Peer reviewed research is preferred to research that has not undergone the peer review
process.

Study type

Among studies that consider chronic exposure (e.g., over a year or longer) prospective
cohort studies are preferred over cross-sectional studies (a.k.a. "ecological studies")
because they control for important confounding variables that cannot be controlled for in
cross-sectional studies. If the chronic effects of a pollutant are considered more
important than its acute effects, prospective cohort studies may also be preferable to
longitudinal time series studies because the latter type of study is typically designed to
detect the effects of short-term (e.g. daily) exposures, rather than chronic exposures.

Study period

Studies examining a relatively longer period of time (and therefore having more data)
are preferred, because they have greater statistical power to detect effects. More
recent studies are also preferred because of possible changes in pollution mixes,
medical care, and life style over time.

Study population

Studies examining a relatively large sample are preferred. Studies of narrow population
groups are generally disfavored, although this does not exclude the possibility of
studying populations that are potentially more sensitive to pollutants (e.g., asthmatics,
children, elderly). However, there are tradeoffs to comprehensiveness of study
population. Selecting a C-R function from a study that considered all ages will avoid
omitting the benefits associated with any population age category. However, if the age
distribution of a study population from an “all population” study is different from the age
distribution in the assessment population, and if pollutant effects vary by age, then bias
can be introduced into the benefits analysis.

Study location

U.S. studies are more desirable than non-U.S. studies because of potential differences
in pollution characteristics, exposure patterns, medical care system, and life style.

Pollutants included in
model

Models with more pollutants are generally preferred to models with fewer pollutants,
though careful attention must be paid to potential collinearity between pollutants.
Because PM has been acknowledged to be an important and pervasive pollutant,
models that include some measure of PM are highly preferred to those that do not.

Measure of PM

PM, . and PM,, are preferred to other measures of particulate matter, such as total
suspended particulate matter (TSP), coefficient of haze (COH), or black smoke (BS)
based on evidence that PM, ; and PM,, are more directly correlated with adverse health
effects than are these more general measures of PM.

Economically
valuable health
effects

Some health effects, such as forced expiratory volume and other technical
measurements of lung functioning, are difficult to value in monetary terms. These health
effects are not quantified in this analysis.

Non-overlapping
endpoints

Although the benefits associated with each individual health endpoint may be analyzed
separately, care must be exercised in selecting health endpoints to include in the overall
benefits analysis because of the possibility of double counting of benefits. Including
emergency room visits in a benefits analysis that already considers hospital admissions,
for example, will result in double counting of some benefits if the category “hospital

admissions” includes emergencz room Visits.
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Peer-Review of Research

Whenever possible, peer-reviewed research rather
than unpublished information has been used.
Research that has been reviewed by the EPA's own
peer review processes, such as review by the Clean Air
Scientific Advisory Committee (CASAC) of the
Science Advisory Board (SAB), has been used
whenever possible. Research reviewed by other public
scientific peer review processes, such as the National
Academy of Science, the National Acidic Precipitation
Assessment Program, and the Health Effects Institute
is also included in this category.

Studies published (or accepted for publication) in
peer reviewed journals but not reviewed by CASAC
have also been considered for use in the section 812
prospective assessment, and have been used if they are
determined to be the most appropriate available
studies. Indications that EPA intends to submit
research to the CASAC (such as inclusion in a draft
Criteria Document or Staff Paper) are considered
further evidence that specific journal-published
research is acceptable for use in this analysis.

Air pollution health research is a very active field
of scientific inquiry, and new results are being
produced regularly. Many research findings are first
released in university working papers, dissertations,
government reports, non-reviewed journals and
conference proceedings. Some research is often
published in abstract form in journals, which does not
require peer review. In order to use the most recent
research findings and be as comprehensive as possible,
unpublished research was examined for possible use.

Study Type and Quality

Epidemiological studies of the relationship
between air pollutants and health endpoints can
generally be categorized as (1) “ecological” cross-
sectional, (2) prospective cohort, or (3) longitudinal
time series studies. The first two types of study are
concerned with longer exposure periods, such as a
year or over several years, while the third type is
concerned with short-term exposures over one or
more days. Among studies that consider longer

exposure periods, or chronic exposure, prospective
cohort studies are preferable to “ecological” cross-
sectional studies, because they control for important
confounding variables which cannot be controlled for
in “ecological” cross-sectional studies. If the effects
of chronic exposures are considered more significant
than acute effects, prospective cohort studies may also
be preferable to longitudinal time series studies
because the latter type of study is typically designed to
detect the effects only of daily exposures, rather than
chronic exposures.

Studies that control for a broad range of likely
confounders can offer a more robust conclusion
about an individual pollutant, even if the statistical
confidence interval is larger due to the inclusion of
more variables in the analysis. For example, a study
that considers only air pollution, omitting other
variables associated with a health outcome, could
incorrectly conclude that a reduction in air pollution
is exclusively responsible for a reduction in the health
outcome. Potential confounders include weather-
related variables (e.g., temperature) and ambient
pollutants other than those being studied.

Study Population

Many of the studies relevant to quantifying the
benefits of air pollution reductions have focused on
subpopulations that may or may not be representative
of the general population. Extrapolating results from
studies on nonrepresentative subpopulations to the
general population introduces uncertainties into the
analysis, but the magnitude of the uncertainty and its
direction are often unknown. Because of these
uncertainties, benefit analyses often limit the
application of the C-R functions only to those
subpopulations with the characteristics of the study
population.  While this approach has merit in
minimizing uncertainty, it can result in a severe
underestimate of benetfits if similar effects are likely to
occur in the rest of the population. For these reasons,
studies that examine broad, representative populations
may be preferable to studies with narrower scope,
because they allow application of the functions to
larger numbers of persons. There are, however,
tradeoffs to comprehensiveness of study population.
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Selecting a C-R function from a study that considered
all ages will avoid omitting the benefits associated with
any population age category. However, if the age
distribution of the study population from an “all
population” study is different from the age
distribution in the assessment population, and if
pollutant effects vary by age, then bias can be
introduced into the benefits analysis.

Study Period

Studies examining a relatively longer period of
time are preferable because they have more data and
therefore have greater statistical power to detect
effects. In addition, more recent studies are preferable
to older studies because of possible changes in
pollution mixes, medical care, and life style over time.
This latter issue is effectively a benefits transfer issue.
Differences across time between the study period and
the assessment period introduce uncertainties into the
benefits analysis, because it is not known to what
extent the C-R relationship estimated during the study
period will be the same during the assessment period.

Study Location

Studies conducted in locations that are different
from the assessment location are generally less
desirable because of the introduction of possible
benefits transfer problems. The characteristics of a
population (e.g., the proportion of the population that
is particulatly susceptible to pollution, or the behavior
patterns of the population) and/or the pollution mix
to which it is exposed may differ notably between the
study location and the assessment location. As with
differences in time periods, these differences in
location introduce uncertainties into the benefits
analysis, because it is not known to what extent the C-
R relationship estimated in the study location is the
same in the assessment location. For that reason,
studies conducted in the United States or Canada are
preferable for this benefits analysis to studies
conducted, for example, in Europe or in developing
countries. In addition, studies that include a wide
range of areas are preferred. Studies focusing on a
single city are not as desirable as studies that focus on
multiple cities.

The preference for studies that focus on a range
of areas, in the U.S. and Canada, is driven by a
concern that there may be significant regional
variation in the estimated C-R functions. There has
not, however, been enough research to establish
regional specific values.

Pollutants Included in the Model

In many cases, several pollutants in a “pollutant
mix” are correlated with each other -- that is, their
concentrations tend to change together. Although
there may be an association between an adverse health
effect and this mix, it may not be clear which pollutant
is causally related to the health effect -- or whether
more than one pollutant is causally related. Using
separate regressions (from single pollutant models) for
each pollutant may overstate the effect of each
pollutant alone. Models that consider pollutants
simultaneously are therefore preferred, though careful
attention must be paid to potential collinearity
between pollutants. Because PM has been
acknowledged to be an important pollutant, models
that include some measure of PM are highly preferred
to those that do not.

Measure of Particulate Matter

Different epidemiological studies examining the
health effects associated with particulate matter (PM)
have used different measutres of PM. Some have used
PM,, while others have used PM,.. The number of
studies using PM,; as the indicator of PM is
substantially more limited than the number using
PM,, because of the relative sparseness of PM,;
monitor data. A number of studies have used total
suspended particulate matter (TSP), British Smoke,
coefficient of haze (COH) and other measures of
particulate matter. There is some evidence that the
relationship between fine particulates (PM,;) and
health effects may be stronger than that between other
measures of PM and health effects. If this is true,
then studies that use measures of PM that more
closely approximate the fine fraction of PM (such as
PM, ) are preferable to those that use other measures.
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Economically Valuable Health Effects

A number of the health endpoints examined in
the literature are difficult to value in monetary terms.
These effects include forced expiratory volume and
other technical measurements of lung functioning. It
is not clear how to assign an economic value to such
effects, as their impact on future medical condition
and lifestyle are not well understood. One method to
value these “clinical” measures is to estimate their
association with adverse health effects that are valued.

Ostro et al. (1989a) reanalyzed data from four
controlled ozone exposure studies, and found a
statistically significant relationship between forced
expiratory volume in one second (FEV)) and the
probability that an individual will report a mild,
moderate or severe respiratory symptom. In this case,
one could estimate ozone benefits by first calculating
the change in FEV, associated with a given change in
ozone concentration, converting this to a change in
respiratory symptoms, and then valuing the respiratory
symptom change. In a separate study, Neas and
Schwartz (1998) found that certain measures of
reduced pulmonary functioning are significant
predictors of mortality. This result, however, would
be difficult to use to calculate air pollution benefits,
because they looked at the relationship between
declines in lung function and mortality, and they did
not estimate the impact of air pollution on this
decline; separate work would be required to estimate
the impact of air pollution on lung function.

The main concern when translating a clinical
measure such as FEV, to an economically valuable
one such as acute respiratory symptoms is that
epidemiological work may already be available from
which one can directly estimate a C-R function. To
estimate acute respiratory symptoms directly (from an
epidemiological study) and indirectly through the
clinical measure, would double-count the effect.
Another concern is that using the indirect method
adds a layer of uncertainty because one must first
translate the estimated clinical measure to the
estimated economically valuable measure.

Non-Overlapping Health Effects

Several endpoints reported in the health effects
literature overlap with each other. For example, the
literature reports relationships for hospital admissions
for single respiratory ailments (e.g. pneumonia or
chronic obstructive pulmonary disease) as well as for
all respiratory ailments combined. Similarly, several
studies quantify the occurrence of respiratory
symptoms where the definitions of symptoms are not
unique (e.g., shortness of breath or upper respiratory
symptoms). Measures of restricted activity provide a
final example of ovetlapping health endpoints.
Estimates are available for pollution-related restricted
activity days, mild restricted activity days, and activity
restriction resulting in work loss. While the benefits
analysis estimates the benefits associated with
individual endpoints, it takes care in deciding which
endpoints to include in an estimate of total benefits,
in order to avoid double-counting of benefits from
overlapping endpoints.

Mortality

Health researchers have consistently linked air
pollution with excess mortality. Prospective cohort
and cross-sectional studies have found a relationship
between mortality over the course of a year or more
with pollution levels measured over the course of a
year or several years. In addition, a number of so-
called “short-term” mortality studies have linked daily
variations in mortality with daily pollution levels.

The EPA Clean Air Council (U.S. EPA, 1999, p.
11) recommends using the prospective cohort study
by Pope et al. (1995), rather than short-term mortality
studies. Although short-term studies lend substantial
support to the hypothesis that there is a relationship
between PM and mortality, they focus only on the
acute effects associated with daily peak exposures. In
contrast, the Pope et al. study was designed to capture
the effect of exposure over many years, however it
may be less able to capture the short-term impact of
peak exposures. This creates an overlap of unknown
size between the mortality estimates based on short-
term studies and Pope et al. Capturing the chronic
impact, however, is judged more important than
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missing the impact of an unknown number of deaths
occurring shortly after short-term peak exposures.
For this reason, the Pope et al. study is preferred. A
second prospective cohort study by Dockery et al.
(1993) is also used to estimate the impact of PM on
mortality. However, the Dockery et al. study used a
smaller sample of individuals from fewer cities than
the study by Pope et al., and is therefore presented
only as an illustrative calculation that is consistent with
Pope et al. (1995); the Pope et al. estimate is used in
the primary analysis.”

The total mortality effect estimated by the Pope et
al. (1995) and the Dockery et al (1993) studies does
not necessatily occur in the same year as the estimated
exposure. However, the exact relationship between
the time of exposure and mortality is not well known.
In the primary analysis, we assume that mortality
occurs over a five year period, with 25 percent of the
deaths occurring in the first year, 25 percent in the
second year, and 16.7 percent in each of the third,
fourth, and fifth years. We also perform an analysis of
the sensitivity of benefits valuation to the lag
structure by considering a range of assumptions about
the timing of mortality (see Appendix H). It is
important to keep in mind that changes in the lag
assumptions do not change the total number of
estimated deaths, but rather the timing of those
deaths.

At least some evidence has been found linking
each of the criteria pollutants with mortality. This
raises concerns that the mortality-related benefits of
air pollution reduction may be overstated if separate
pollutant-specific estimates, some of which may have
been obtained from models excluding the other
pollutants, are aggregated. In addition, there may be
important interactions between pollutants and their
effect on mortality.

"The Pope et al., 1995 study estimated a C-R coefficient using
median PM concentration data; however, mean pollutant
concentration is the measure of central tendency commonly used
in other health studies. We will explore the possibility of re-
estimating the PM mortality C-R function using mean
concentration data in future 812 prospective analyses.

The Pope et al. (1995) study included only PM, so
it is unclear to what extent it may be including the
impacts of ozone or other gaseous pollutants. Because
of concern about overstating of benefits and because
the evidence associating mortality with exposure to
particulate matter is currently stronger than for other
pollutants, only the benefits of PM-related mortality
avoided are included in the total benefits estimate.
The benefits associated with ozone reductions are
estimated but are not included in the estimate of total
benefits. The relationship between CO and mortality
is briefly considered, but the evidence reviewed does
not point to a clear link between the two.

Statistical Lives Saved Versus
Statistical Life-Years Saved

Considerable attention has been paid to using life-
years lost as an alternative to lives lost as a measure of
pollution-related premature mortality. This analysis
uses both approaches to estimating pollution-related
premature mortality.

The actual number of years any particular
individual is going to live cannot be known. Instead,
one estimates the expected, or statistical average,
number of “life-years lost”. The number of life-years
lost may be expressed as the average number of life-
years lost for all of the people who are exposed (the ex
ante measure), or as the average number of life-years
lost for the people who died from exposure (the ex
post measure).

The ex ante estimate of life-years lost depends on
the individual having been exposed to a pollutant, 7ot
on the individual having died prematurely from that
exposure. Suppose, for example, that a 25 year old
has a life expectancy of 50 more years in the absence
of PM exposure and only 48 more years in the
presence of exposure. The exposed 25 year old
would, on average, have her life expectancy shortened
by two years. That is, two expected life-years would
be lost by every exposed individual.

The ex post estimate of life-years lost depends on
the individual actually having died from exposure to
pollution. When an individual dies of exposure to
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PM, he is said to have lost the number of years he
would have been expected to live; this can be
calculated from age- and gender-specific life
expectancy tables. Suppose that the life expectancy of
25 year olds is 75 -- a 25 year old can expect to live 50
more years. A 25 year old who dies from exposure to
PM has therefore lost 50 expected years of life. This
is the life-years lost that can be expected by every
affected 25 year old (i.e., every 25 year old who actually
dies from exposure to PM).

Estimates of the total life-years lost by a
population exposed to PM depend on several factors,
including the age distribution and the size of the
exposed population, the magnitude of the PM change,
the relative risk assumed to be associated with the
change in PM, and the length of exposure. A
population chronically exposed to a given increase in
PM will lose more life-years than a population
exposed to the same increase in PM for only a year or
two.” A population that is generally older will lose
fewer life-years, all else equal, than one that is
generally younger, because older individuals have
fewer (expected) years of life left to lose. And a
population exposed to a greater increase in PM will
lose more life-years than one exposed to a smaller
increase in PM. Finally, the life-years lost by the
population will increase as the relative risk associated
with the increase in PM increases.

Life-years lost are usually reported as averages
over a population of individuals. The population over
which the average is calculated, however, can make a
crucial difference in the reported average life-years
lost. The average life-years lost per exposed individnal
(the ex ante estimate) is just the total life-years lost by
the population of exposed individuals who died
divided by the number of exposed individuals.
Although those individuals who do die prematurely
from exposure to PM may lose several expected years

® Even in the absence of cumulative effects of exposure,
exposure of a population for many years will result in a greater
total number of pollution-related deaths than exposure for only a
year or two, because the same relative risk is applied repeatedly,
year after year, to the population, rather than for only a year or
two.

of life, most exposed individuals do not actually die
from exposure to PM and therefore lose zero life-
years. The average life-years lost per exposed
individual in a population, alternatively referred to as
the average decrease in life expectancy of the exposed
population, is therefore heavily weighted towards
zero.

The ex ante and ex post measures of life-years lost
take the same total number of life-years lost by the
exposed population and divide them by different
denominators. The ex ante measure divides the total
life-years lost by the total population exposed; the ex
post measure divides the same total life-years lost by
only a small subset of the total population exposed,
namely, those who died from PM. The average per
exposed individual is therefore much smaller than the
average per affected individual. Because both types of
average may be reported, and both are wvalid
measurements, it is important to understand that,
although the numbers will be very dissimilar, they are
consistent with each other and are simply different
measures of the estimated mortality impact of PM.

To illustrate the different measures of life-years
lost and the effects of various input assumptions on
these measutres, death rates from the 1992 U.S.
Statistical Abstract were used to follow a cohort of
100,000 U.S. males from birth to age 90 in a “dirty”
scenario and a “clean” scenario, under various
assumptions. Death rates were available for ages less
than 1, ages 1-4, and for ten-year age groups
thereafter. The ten-year age groups were divided into
tive-year age groups, applying the death rate for the
ten-year group to each of the corresponding five-year
age groups. Ex ante and ex post measures of life-years
lost among those individuals who survive to the 25-29
year old category (96,947 individuals) were first
calculated under the assumptions in the World Health
Organization (WHO) 1996 report. These
assumptions were that the relative risk of mortality in
the “dirty”” scenario versus the “clean” scenario is 1.1;
that exposure does not begin until age 25; that the
effect of exposure effects observed throughout the
fifteen year exposure period can be summed and
attributed (for mathematical convenience) to the 15"
year of exposure; that individuals at the beginning of
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each age grouping either survive to the next age
grouping or live zero more years; and that all
individuals age 85 live exactly five more years. Under
these assumptions, the expected life-years lost per
exposed individual in the 25-29 year old cohort is 1.32
years, while the expected life-years lost per affected
individual (i.e., for each of the 7,646 expected PM-
related deaths) is 16.44 years.

Ozone and Mortality

The literature investigating the relationship
between ozone and mortality has been rapidly
evolving over the last several years. Of the 31 time-
series epidemiology studies identified in the literature
that report quantitative results on a possible
association between daily ozone concentrations and
daily mortality, 25 were published or presented since
1995. These studies were conducted in various urban
areas throughout the world: sixteen in the United
States or Canada, nine in Europe, two in Australia,
and four in Latin America. Seventeen of the studies
report a statistically significant relationship between
ozone and mortality, with the more recent studies
tending to find statistical significance more often than
the earlier studies.

While the growing body of epidemiological
studies suggests that there may be a positive
relationship between ozone and premature mortality,
there is still substantial uncertainty about this
relationship. Because the evidence linking premature
mortality and particulate matter is currently stronger
than the evidence linking premature mortality and
ozone, it is important that models of the relationship
between ozone and mortality include a measure of
particulate matter as well. Because of the lack of
monitoring data on fine particulates or its
components, however, the measure of particulate
matter used in most studies was generally either PM,,
or TSP or, in some cases, Black Smoke. If a
component of PM, such as PM, 5 or sulfates, is more
highly correlated with ozone than with PM,, or TSP,
and if this component is also related to premature
mortality, then the apparent ozone effects on mortality
could be at least partially spurious.

Even if there is a true relationship between ozone
and premature mortality, after taking particulate
matter into account, there would be a potential
problem of double counting in this analysis if the
ozone effects on premature mortality were added to
the PM effects estimated by Pope et al., 1995, because,
as noted above, the Pope study does not include
ozone in its model. Because of this, the potential
ozone-mortality relationship is not included in the
primary analysis. Instead the benefits associated with
ozone reductions are estimated in a sensitivity analysis.
The results of this sensitivity analysis should be
reviewed with the appropriate caution, however, in
view of the above-noted uncertainties surrounding a
potential ozone-mortality relationship.

To synthesize the results of multiple studies on
the relationship between ozone and premature
mortality, a modified meta-analysis method was used.
Because of differences in the averaging times used in
the underlying studies (some use daily average ozone
levels, while others use 1-hour daily maximum values),
the meta-analysis approach was applied to the
predicted mortality incidence changes estimated by
each of the studies rather than to the coefficients of
ozone in the C-R functions.

A study was included in the meta-analysis if it (1)
is in or has been accepted by a peer-reviewed
publication; (2) reports quantitative results for daily
mortality and ozone (rather than for other measures
such as total oxidants); (3) considers the entire
population (rather than only a subset of the
population) in the study location; (4) considers the
whole year (rather than only a season or seasons); (5)
considers all non-accidental or total mortality; (6)
considers only one location (rather than a pooling of
results across multiple locations); and (7) reports
results from a copollutant model, that includes PM or
some proxy for PM in the model with ozone, as well
as some measure of temperature and season. The
selection of a single result from among multiple ozone
results reported in the same study was facilitated by
the following three additional selection criteria: (8) PM
(PM,, or PM,;) is preferable to other measures of
particulate matter; (9) more pollutants in the model is
preferable to fewer pollutants; and (10) Poisson
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regression is preferred to other speciﬁcations.‘) Nine
studies were chosen using these criteria. To minimize
benefits transfer problems, the meta-analysis was
limited to the four of these nine studies that were
conducted in the United States. Table D-2a briefly
describes the four studies included in the meta-
analysis.

? Almost all the models in the literature used Poisson
regression. This final criterion was therefore included to impose
consistency, if there was no other means by which to select a
model from among several models in a study.

D-20



The Benefits and Costs of the Clean Air Act, 1990 to 2010

Table D-2a

Studies and Results Selected for Meta-Analysis of the Relationship between Daily Mortality
and Exposure to Ambient Ozone in the United States

O, Concentration Relative Risk and

Study Location/ Copollutants Measure 95% Cl for a 25 ppb
Study Duration in model (ppb) Increasein O
Ito and Thurston Cook County, PM,, average of same day 1.016
(1996) ® lllinois and previous day 1-hr (1.004 — 1.029)
1985-1990 maxima
Kinney et al. (1995) Los Angeles PM,, daily 1-hr max 1.000
County (0.989 — 1.010)
1985-1990

The following studies were used to generate a single distribution for Philadelphia:

Moolgavkar et al. Philadelphia TSP, SO, daily avg 1.015
(1995) 1973-1988 (1.004 — 1.026)

Samet et al. (1997) Philadelphia TSP, SO,, NO,, 2-day avg 1.024
1974-1988 Lagged CO (1.008 — 1.039)

# Relative risks derived from the ozone coefficient and standard error from the copollutant model were provided by personal

communication with Dr. Kazuhiko Ito.

Carbon Monoxide and Mortality

Research work presents some evidence that CO
may be significantly linked to mortality, although it is
not clear to what extent CO may have an effect
independent of PM. Burnett et al. (1998) studied
mortality in association with CO, NO,, O, SO,,
coefficient of haze, TSP, sulfates and estimated PM, .
and PM,, from 1980-1994 in metropolitan Toronto.
In models that included the day of the week, weather,
CO and one of the other pollutants, they found that
daily average CO and all of the PM measures
contributed a significant fraction of the daily number
of non-accidental deaths. The measure for coefficient
of haze had the strongest impact on the relative risk
for CO. The relative risk associated with a 1.4 ppm
change (i.e., 95" to the 5" CO percentile) was 1.070 in
the single pollutant model; with the addition of COH,
it fell to 1.043 (Burnett et al., 1998, Table 2).
Nevertheless, the impact of CO is still quite large, and
it is reported to occur in all seasons, age, and disease
groupings. The model with the best fit included CO
and TSP. With both CO and TSP in the model and
using the mean levels of the pollutants reported for
Toronto, CO contributed, on average, 4.7% of daily
non-accidental deaths and TSP contributed 1%
(Burnett et al., 1998, p. 689).

A review of three articles suggests that Burnett et
al’s results may not be consistent with other
published results (Table D-2b)." In a model with CO
and PM,,, Kinney et al. (1995, Figure 3) reported a
relative risk of 1.05 for a 10 ppm CO increase (with a
95% confidence interval of 0.98-1.12). This is not
statistically significant at the usual significance level of
5%, and the implied relative risk (1.007) for a 1.4 ppm
change is about six times smaller than that reported by
in Burnett et al’s two-pollutant model.""  Saldiva
(1995, Table 4) reported a positive and significant CO
regression coefficient in a model with just CO.
Estimated at the mean, this suggests a relative risk of
1.039 per 1.4 ppm of CO, or about half the size of
that reported in Burnett et al.’s single pollutant model
(RR = 1.070)."* Saldiva et al. also reported a model
with CO along with all of the other measured

1°A fourth study, by Gwynn, Burnett, and Thurston, cited as
being submitted for publication, was not considered here.

""The undetlying coefficient equals the logarithm of the
relative risk divided by the change in pollution.

*The regression coefficient, 8, = 1.69 (Saldiva et al., 1995,
Table 4) and the mean mortality rate per day = 62.6 (1995, Table
1). Estimated mortality after reducing CO by 1.4 ppm = 60.23
deaths per day. The relative risk = (62.9/60.23) = 1.039.
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pollutants: PM,,, SO,, NO,, and O;. In this model,
the PM,, coefficient remained significant and
unchanged from its single-pollutant model value, but
the CO coefficient dropped substantially and became
insignificant (1995, Table 4). Touloumi et al. (1996,
Table 4) estimated a single pollutant model with a
reported relative risk of 1.05 for a 7.6 mg/m’ rise in
CO. Assuming a conversion of 1 ppm = 1.145
mg/m’ (U.S. EPA, 1991, Table 3-1), this suggests a
relative risk (1.015) that is about five times smaller
than the relative risk (1.070) in Burnett et al.’s single
pollutant model value.

In 1991, the EPA (1991, p. 1-12) concluded that
the results of CO epidemiological work “is suggestive,
but not conclusive evidence” that CO may lead to
sudden death in persons with coronary artery disease.
Since that time, studies by Mortris et al. (1995) and
Schwartz and Mortis (1995) reported that ambient CO
concentrations  increase  the likelthood  of
hospitalization for cardiovascular disease. It is not
unlikely that a certain fraction of these admittances
will die, and thus indirectly one might estimate the
impact of CO on mortality. However, there does not
appear to be a study from which one may develop
with confidence a C-R function to directly estimate
CO-related mortality.” The results from Burnett et al.
(1998) suggest that CO may have an effect on
mortality independent of other pollutants, but it is
premature to base an estimate of CO-related mortality
with the relative risk published in their study.

PThis difficulty may be related in part to the highly variable
CO concentrations that are typically found in an urban area.
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Table D-2b
Selected Studies and Results for Carbon Monoxide and Mortality
Study Location and Population Endpoint  Pollutants Main Findings Comment
Period
Burnett et Toronto, Canada All ages, non- CO,NO,, Significant CO effect found in all two Association with cardiac-
al. (1998) 1980-1994 metropolita  accidental SO, O,, pollutant models. Controlling for CO, related mortality is stronger,
n Toronto mortality SO,, TSP,  significant effect found for SO,, TSP, COH, but CO is also significantly
COH, PM,,, and PM, .. related to non-cardiac
PM,q, mortality. PM,, and PM, ¢
s estimated from SO,, TSP,
and COH.
Kinney et al. Los Angeles All ages non- CO, O,, In single pollutant models, CO significant, Magnitude of single pollutant
(1995) County accidental PM,, and PM,, and O, are marginally significant. CO relationship drops
1985-1990 mortality In model with CO and PM,,, both CO and modestly with inclusion of
PM,, are not significant. PM,,.
Saldiva et Sao Paulo, Brazil Elderly mortality CO, O,, CO significant in single pollutant model.
al. (1995) 1990 to 1991 (+65 years) from PM,,, SO,, CO not significant in model with all other
natural NO, pollutants.
causes
Touloumi et Athens, Greece All ages total CO, SO, CO, SO,, and black smoke significant in Deaths during a one month
al. (1996) 1987-1991 mortality black single pollutant models. summertime heat wave were
excluded from analysis

smoke
|
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Post-Neonatal Mortality

In a recent study of four million infants in 86 U.S.
metropolitan areas, Woodruff et al. (1997) linked PM,,
exposure in the first two months of an infant’s life
with the probability of dying between the ages of 28
days and 364 days. In addition to the work by
Woodruff et al., recent work in Mexico City (Loomis
et al., 1999), the Czech Republic (Bobak and Leon,
1992), Sao Paulo (Pereira et al., 1998; Saldiva et al.,
1994), and Beijing (Wang et al, 1997) provides
additional evidence that particulate levels are
significantly related to infant or child mortality, low
birth weight or intrauterine mortality (Table D-3).

Conceptually, neonatal or child mortality could be
added to the premature mortality predicted by Pope et
al. (1995), because the Pope function covers only the
population over 30 years old. Predicted neonatal
mortality could not be added to the premature
mortality predicted by the daily (short-term exposure)
mortality studies, however, because these studies
cover all ages. The EPA Clean Air Council recently
advised the Agency not to include post-neonatal
mortality in this analysis because the study is of a new
endpoint and the results have not been replicated in
other studies (U.S. EPA, 1999, p. 12). The estimated
avoided incidences of neonatal mortality are estimated
and presented as a sensitivity analysis, but are not
included in the aggregate benefits analysis results.
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Table D-3

Studies and Results Selected for Adverse Effects in Fetuses, Infants, and Young Children

Location and

Study Period Population Endpoint Pollutants Main Findings
Bobak and 45 of 86 neonates (0- all-cause TSP, SO,, Controlling for SO, and NO,, TSP
Leon administrative 1 month); mortality; NO, linked to all-cause and respiratory
(1992) districts in the post- respiratory post-neonatal mortality; weaker,
Czech Republic  neonates (1- mortality insignificant effect found for
1986-1988 12 months) neonatal. Controlling for TSP and
SO,, NO, marginally significant for
all-cause and respiratory post-
neonatal mortality; no effect for
neonatal mortality. No effect found
for SO,.
Loomis et southwestern infants <1 all cause PM, ., O,, PM, . and NO, significant in single
al. (1999) Mexico City year old mortality NO,, SO, pollutant models. PM, and NO,
1/93-7/95 both not significant in two pollutant
model; PM, ; coefficient changed
little from single pollutant; NO,
coefficient dropped substantially. O,
not significant. SO, not analyzed
since ambient levels were negligible.
Pereira et Sao Paulo, fetuses over intrauterine  PM,, O,, In single pollutant models, NO,, SO,,
al. (1998) Brazil 28 weeks of  mortality NO,, SO,, and CO significantly related to
1/91-12/92 pregnancy CcO intrauterine mortality. PM,, and O,
age not significant. Considering all
pollutants simultaneously, NO, is the
only significant pollutant.
Ritz and Los Angeles, gestational low birth Cco Average CO exposure in the last
Yu (1999) CA age 37-44 weight trimester associated with low birth
1989-1993 weeks weight.
Saldiva et Sao Paulo, children <5 respiratory  PM,,, O, NO, significantly related to
al. (1994) Brazil mortality NO,, SO,, respiratory mortality. No effect found
5/90-4/91 CO for the other pollutants.
Wang etal. Beijing, China gestational low birth TSP, SO, TSP and SO, exposure in the final
(1997) 1988-1991 age 37-44 weight trimester significantly related to low
weeks birth weight. Both pollutants highly
correlated (r=0.92).
Woodruff 86 metropolitan  post- all-cause PM,, PM,, exposure in the first two months
etal. areas in the neonates (1-  mortality; of life significant for all-cause
(1997) u.s. 12 months) respiratory mortality. PM,, significant for
1989-1991 mortality respiratory mortality in average birth-
weight infants, but not low birth-
weight infants.
Xu et al. Beijing, China 25,370 pre-term TSP, SO, TSP and SO, exposure significant for
(1995a) 1988 pregnant delivery pre-term delivery.
women
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Chronic lllness

There are a limited number of studies that have
estimated the impact of air pollution on chronic
bronchitis (Table D-4). An important hindrance is the
lack of health data and the associated air pollution
levels over a number of years. Schwartz (1993) and
Abbey et al. (1995; 1993) provide evidence that PM
exposure over a number of years gives rise to the
development of chronic bronchitis in the U.S., and a
recent study by McDonnell et al. (1999) provides
evidence that ozone exposure is linked to the
development of asthma in adults. These results are
consistent with research that has found chronic
exposure to pollutants leads to declining pulmonary
functioning (Abbey et al., 1998; Ackermann-Liebrich
et al.,, 1997; Detels et al., 1991).

Schwartz (1993) examined survey data collected
from 3,874 adults ranging in age from 30 to 74, and
living in 53 urban areas in the U.S. The survey was
conducted between 1974 and 1975, as part of the
National Health and Nutrition Examination Survey,
and is representative of the non-institutionalized U.S.
population.  Schwartz (1993, Table 3) reported
chronic bronchitis prevalence rates in the study
population by age, race, and gender. Non-white males
under 52 years old had the lowest rate (1.7%) and
white males 52 years and older had the highest rate
(9.3%). The study examined the relationship between
the prevalence of reported chronic bronchitis and
annual levels of TSP, collected in the year prior to the
survey.

Abbey et al. (1995; 1993) are part of a series of
studies of an ongoing prospective cohort tracking
research project that began in 1977. These two
studies on the development of chronic respiratory
illness are based on a ten year follow-up examination
of adult Seventh-Day Adventists living in California.
Abbey et al. (1993) examined 3,914 adults, and
estimated the relationship between annual mean
ambient TSP, ozone and SO, and the presence of
certain chronic respiratory symptoms (including
airway obstructive disease (AOD), chronic bronchitis,
and asthma) that were not present at the beginning of
the study. TSP was significantly linked to new cases

of AOD and chronic bronchitis, but not to asthma or
the severity of asthma. Ozone was not linked to the
incidence of new cases of any endpoint, but ozone
was linked to the severity of asthma. No effect was
found for SO,. Abbey et al. (1995) examined the
relationship between estimated PM,; (annual mean
from 1966 to 1977), PM,, (annual mean from 1973 to
1977) and TSP (annual mean from 1973 to 1977) and
the same chronic respiratory symptoms in a sample
population of 1,868 Californian Seventh-Day
Adventists. In this single-pollutant study, there was a
statistically ~ significant PM,; relationship with
development of chronic bronchitis, but not for AOD
or asthma; PM,, was significantly associated with
chronic bronchitis and AOD; and TSP was
significantly associated with all cases of all three
chronic symptoms.

The McDonnell et al. (1999) study used the same
cohort of Seventh-Day Adventists, and examined the
association between air pollution and the onset of
asthma in adults between 1977 and 1992. Males who
did not report doctor-diagnosed asthma in 1977, but
reported it in 1987 or 1992, had significantly higher
ozone exposures, controlling for other covariates; no
significant effect was found between ozone exposure
and asthma in females. No significant effect was
reported for females or males due to exposure to PM,

NO,, SO,, ot SO,.

We estimate the changes in the new cases of
chronic bronchitis using the studies by Schwartz
(1993), Abbey et al. (1993), and Abbey et al. (1995);
also, we estimate the onset of asthma in adult males
using the work by McDonnell et al. (1999). The
Schwartz study is somewhat older and uses a cross-
sectional design; however, it is based on a national
sample, unlike the Abbey et al. studies which are based
on a sample of California residents who were non-
smokers. We first pool the estimates from the two
studies by Abbey et al. — since they are based on the
same sample population and simply use different
measures of PM — and then pool this estimate with
that from Schwartz.

The Abbey et al. (1995; 1993) studies are based on
the incidence of new cases of chronic bronchitis,
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however, Schwartz (1993) is based on the prevalence of
chronic bronchitis, not its zucidence. 'T'o use Schwartz’s
study and still estimate the change in incidence, there
are at least two possible approaches. The first is to
simply assume that it is appropriate to use the baseline
incidence of chronic bronchitis in a C-R function with
the estimated coefficient from Schwartz’s study, to
directly estimate the change in incidence. The second
is to estimate the percentage change in the prevalence
rate for chronic bronchitis using the estimated
coefficient from Schwartz’s study in a C-R function,
and then to assume that this percentage change applies
to a baseline incidence rate obtained from another
source. (That is, if the prevalence declines by 25
percent with a given decrease in PM, then baseline
incidence drops by 25 percent with the same drop in
PM). This analysis uses the latter approach, and
estimates the change in incidence by first estimating
the percentage change in prevalence.
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Table D-4

Summary of Selected Studies for Chronic lllness

Location and

Study Period Population  Endpoint Pollutants ~ Main Findings Comment
Abbey et al.  California 3,914 AOQOD; chronic TSP, O,, TSP linked to new cases of AOD and Emphysema, chronic
(1993) initial survey: 1977  Seventh bronchitis; SO, chronic bronchitis, but not to asthma or  bronchitis, and asthma
final survey: 1987 Day asthma the severity of asthma. O, not linked to  comprise AOD.
Adventists the incidence of new cases of any

endpoint, but O, was linked only to the
severity of asthma. No effect found for

SO,.
Abbey etal. California 1,868 AOD; chronic PM, ¢ PM, . related to new cases of chronic PM, ; estimated from visibility
(1995) initial survey: 1977  Seventh bronchitis; bronchitis, but not to new cases of data.
final survey: 1987 Day asthma AOD or asthma.
Adventists
Chapman et 4 Utah 5,623 persistent So,, SO, Persistent cough and phlegm is higher
al. (1985) communities young cough and NO,, TSP in the community with higher SO,, SO,,
1976 adults phlegm and TSP concentrations.
McDonnell California 3,091 asthma 0O;, PMy,,, Single pollutant models: O, Average pollution level from
etal. (1999) initial survey: 1977  Seventh So,, SO, significantly linked to new asthma 1973-1992 used. Prior to
final survey: 1992 Day NO, cases in males, but not in females; 1987, PM,, estimated from
Adventists other pollutants not significantly linked TSP.
to new asthma cases in males or
females. Two pollutant models
estimated for ozone with another
pollutant; little impact found on size of
ozone coefficient.
Portney and  Nationwide sample 1,318 sinusitis, hay 0,, TSP Controlling for TSP, O, significantly
Mullahy from the 1979 U.S.  persons fever, AOD related to the initiation (or
(1990) National Health age 17-93 exacerbation) of sinusitis and hay
Interview Survey fever; no effect on AOD. TSP not

significantly related to any endpoint,
although it is marginally significant for
AQOD.
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Location and

Study Period Population  Endpoint Pollutants ~ Main Findings Comment
Schwartz Nationwide sample 6,138 chronic TSP TSP significantly related to the Respiratory illness defined as
(1993) from the National individuals bronchitis; prevalence of chronic bronchitis, and a significant condition, coded
Health and ages 30-74  asthma; marginally significant for respiratory by an examining physician as
Nutrition shortness of illness. No effect on asthma or ICD8 code (460-519)
Examination breath dyspnea.
Survey (dyspnea);
1974-1975 respiratory
illness
Xu et al. Beijing, China 1,576 chronic TSP; SO, Chronic bronchitis significantly higher
(1993) Survey conducted never bronchitis; in the community with the highest TSP
August-September  smokers asthma level. TSP not linked to the prevalence
1986 of asthma.
Zemp et al. Eight sites in 9,651 chronic TSP, PM,,,  Single pollutant models: PM,, and NO,
(1999) Switzerland individuals phlegm, NO,, O, significantly associated with chronic
1991 ages 18-60  chronic cough, phlegm, chronic cough or phlegm,
breathlessness breathlessness and dyspnea. Similar
, asthma, though less significant associations
dyspnea on found for TSP. No significant effect
exertion found for Oi'
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Hospital Admissions

There is a wealth of epidemiological information
on the relationship between air pollution and hospital
admissions for vatious respiratory and cardiovascular
diseases; in addition, some studies have examined the
relationship between air pollution and emergency
room (ER) visits. Because most emergency room
visits do not result in an admission to the hospital --
the majority of people going to the ER are treated and
return home -- we treat hospital admissions and ER
visits separately, taking account of the fraction of ER
visits that do get admitted to the hospital, as discussed
below.

Hospital admissions require the patient to be
examined by a physician, and on average may
represent more serious incidents than ER visits
(Lipfert, 1993, p. 230). The two main groups of
hospital admissions estimated in this analysis are
respiratory admissions and cardiovascular admissions.
There is not much evidence linking air pollution with
other types of hospital admissions. The only types of
ER visits that have been linked to air pollution in the
U.S. or Canada are asthma-related visits.

To estimate the number of hospital admissions
for respiratory illness, we pool the incidence estimates
from a variety of U.S. and Canadian studies, using a
random effects weighting procedure. These studies
differ from each other in two important ways: (1)
Some studies considered people of all ages while
others considered only people ages 65 and older; and
(2) The International Classification of Diseases - 9th
revision (ICD-9) codes included in studies of
respiratory hospital admissions and air pollution vary
substantially.

The broadest classification used (for example, in
Schwartz, 1996) includes ICD-9 codes 460-519.
Other studies, however, considered only subsets of
the broader classification. For example, Burnett et al.
(1997b) consider ICD-9 codes 466, 480-486, 490-494,
and 496. The correct set of ICD codes for this study
is difficult to determine. If the broadest category
(460-519) is too broad, including respiratory illnesses
that are not linked to air pollution, we would expect

the estimated pollutant coefficients to be biased
downward; however, they would be used in
combination with a larger baseline incidence in
estimating changes in respiratory hospital admissions
associated with changes in pollutant concentrations.
If the broadest category is correct (i.e., if all the
respiratory illnesses included are actually associated
with air pollution), then studies using only subsets of
ICD codes within that category would presumably
understate the change in respiratory hospital
admissions. It is likely, however, that all the studies
have included the most important respiratory illnesses,
and that the impact of differences in the definition of
“all respiratory illnesses” may be less than that of
other study design characteristics. We therefore treat
each study equally, at least initially, in the pooling
process, assuming that each study gives a reasonable
estimate of the impact of air pollution on respiratory
hospital admissions.

There are several steps in our estimation process:

® Develop  study-specific  estimates  of
respiratory admissions incidence change;

® Develop C-R functions for each pollutant in
a model from a given study: e.g., Burnett et
al. (1997b) included PM, 5 o, O;, NO,, and
SO, in their final model for respiratory
admissions (ICD-9 codes 464-466, 480-480,
490-494, 490);

® [Estimate the change in incidence associated
with the change in each air pollutant
considered in the model, and aggregate these
incidence changes across the pollutants in the
model: e.g., for Burnett et al. (1997b) we sum
the incidence changes associated with PM, 5.
100 O3, NO,, and SO,;

® Ifa study estimated separate models for non-
overlapping respiratory illness categories, sum
the estimated incidence changes across these
non-overlapping categories: e.g., Delfino et
al. (1994) estimated two separate models: one
for asthma (ICD code 493) and one for all
respiratory non-asthma (ICD codes 462-460,
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480-487, 490-492, 494, and 496); we
estimated and summed incidences for these
two categories.

Aggregate estimates across non-ovetlapping age
categories:

® Seven studies estimated C-R functions for
respiratory admissions for people ages 65 and
older. One study, Sheppard et al. (1999),
estimated a C-R function for asthma only for
people under 65. Using a Monte Cartlo
procedure, we aggregate the results from the
Sheppard study with those from each of the
over-65 respiratory admissions studies.

Pool estimates of respiratory hospital admissions
changes:

® Four studies estimated C-R functions for
respiratory admissions for people of all ages.
With the seven “all ages” estimates developed
in step 2, there are eleven separate estimates
of the change in respiratory hospital
admissions associated with a change in air
pollutant concentrations. Using Monte Catlo
procedures, the results of these eleven studies
are pooled.

Table D-5 summarizes the studies used in
estimating respiratory admissions; Table D-6 provides
more detailed information on these studies, and other
studies that were not chosen for this analysis.

Similar issues of definition arise for cardiovascular
hospital admissions. The broadest classification we
have seen in the epidemiological literature includes
ICD codes 390-429 (see, for example, Schwartz,
1999). Some studies, however, use a much more
narrow definition, including only subsets of the larger
group of ICD codes. We use a similar procedure for
cardiovascular admissions as we used for respiratory
hospital admissions. Table D-7 summarizes the
studies used in estimating cardiovascular admissions;
Table D-8 provides more detailed information on
these studies, and other studies that were not chosen
this analysis.

Because we are estimating ER visits as well as
hospital admissions for asthma, we must avoid
counting twice the ER visits for asthma that are
subsequently admitted to the hospital. To avoid
double-counting, the baseline incidence rate for
emergency room visits is adjusted by subtracting the
percentage of patients that are admitted into the
hospital. Three studies provide some information to
do this: Richards et al. (1981, p. 350) reported that
13% of children's ER visits ended up as hospital
admissions; Lipfert (1993, p. 230) reported that ER
visits (for all causes) are two to five times more
frequent than hospital admissions; Smith et al. (1997,
p- 789) reported 445,000 asthma-related hospital
admissions in 1987 and 1.2 million asthma ER wvisits.
The study by Smith et al. seems the most relevant
since it is a national study and looks at all age groups.
Assuming that air-pollution related hospital
admissions first pass through the ER, the reported
incidence rates suggest that 37%
(=445,000/1,200,000) of ER visits ate subsequently
admitted to the hospital, or that ER visits for asthma
occur 2.7 times as frequently as hospital admissions
for asthma. The baseline incidence of asthma ER
visits is therefore taken to be 2.7 times the baseline
incidence of hospital admissions for asthma. To
avoid double-counting, however, only 63% of the
resulting change in asthma ER visits associated with a
given change in pollutant concentrations is counted in
the ER visit incidence change.

Table D-9 summarizes the studies used in
estimating ER visits for asthma; Tables D-10 and D-
11 provide more detailed information on these studies
and other ER studies that were not used in the
analysis.
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Table D-5
Studies Used to Develop Respiratory Admissions Estimates
Endpoints Estimated ? Study
Location Study (ICD code) Pollutants Used in Final Model Population
Toronto, Canada Burnett et al. (1997b) all respiratory (464-466, 480-486, PM, ¢ 10, Os, NO,, SO, all ages
490-494, 496)
Toronto, Canada Burnett et al. (1999) asthma (493); respiratory infection 0,, CO, PM, ., (asthma); O,, NO,, PM, ¢ all ages
(464, 466, 480-487, 494); non- (respiratory infection); O,, CO, PM, .,
asthma COPD (490-492, 496) (COPD).
Toronto, Canada Thurston et al. (1994) all respiratory (466, 480-482, 485, O,, PM, all ages
490-493)
Minneapolis-St. Moolgavkar et al. (1997) pneumonia (480-487); COPD 0,, SO,, NO,, PM,, (pneumonia); O,, CO, >64
Paul, MN (490-496) PM,, (COPD)
Minneapolis-St. Schwartz (1994c) pneumonia (480-486); COPD (490- 0,, PM,, (pneumonia); PM,, (COPD) >64
Paul, MN 496)
Birmingham, AL Schwartz (1994a) pneumonia (480-487); COPD PM,, >64
(490-496)
Detroit, Ml Schwartz (1994b) pneumonia (480-486); non-asthma 0,, PM,, >64
COPD (491-492, 494-496)
Spokane, WA Schwartz (1996) all respiratory (460-519) PM,, >64
New Haven, CT Schwartz (1995) all respiratory (460-519) 0,, PM,, >64
Tacoma, WA Schwartz (1995) all respiratory (460-519) 0,, PM,, >64
Seattle, WA Sheppard et al. (1999) asthma (493) CO, PM, <65

# Monetized benefits of non-overlapping endpoints within each study are aggregated. Monetized benefits for asthma among people age <65 (Sheppard et al., 1999) are aggregated with
the benefits in studies of people age >64.
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Table D-6

Summary of Hospital Admissions Studies — Respiratory llinesses

Location and

Study Period Population  Endpoint P